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Fitting valence charge densities at a crystal surface
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A procedure is reported for obtaining a much better initial parameterization of
the charge density than that possible from a neutral atom model. This procedure
involves the parameterization of a bulk charge density model in terms of simple
variables such as bond lengths, which can then be transferred to the problem of
interest, for instance a surface. Parameterization is accomplished through the
fitting of density functional theory calculations for a variety of crystal
distortions. The details of the parameterization are discussed for the specific
case of silicon. This parameterized model can then be applied to surfaces or to
other problems where an initial higher-order model is needed without the
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1. Introduction

The most common method to investigate structures is X-ray
diffraction, where the scattering of the X-rays depends on the
local charge density. Most of the scattering is from the rela-
tively high density region around the atomic cores, and this
core region is only very weakly perturbed by the bonding; in
most cases, one can use the tabulated scattering factors
determined for neutral atoms and get accurate atomic posi-
tions. Although the changes in the charge density in a solid
with bonding relative to isolated atoms are small — of the order
of 1% for the lower-angle structure factors — they can be
measured with care. As a specific example, in normal silicon
the structure factor for the forbidden 222 reflection is 0.18 e~
(DeMarco & Weiss, 1965) (after subtracting the contribution
from thermal vibrations), almost entirely due to the covalent
bonding, whereas the structure factor for the 000 reflection is
14 e”. There is now a fairly large body of literature with
experimental charge density measurements [see Coppens
(1997), Koritsanszky & Coppens (2001) and Coppens &
Iversen (2004) for a recent overview| from X-ray diffraction
and bulk crystals.

In contrast to X-rays, swift electrons with the energies
typically used in a transmission electron microscope (i.e. 100
400 keV) are scattered by the electrostatic potential, related to
the charge density (of both the electrons and the positive core)
by Poisson’s equation. Relatively small changes in the
configuration of the valence electrons lead to quite large
changes in the shielding of the positive core potential, thereby
leading to rather large changes in the intensities, in some cases
changes of 50-100% at low scattering angles. Since it is
possible to measure with absolute accuracies of 0.1% with
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addition of any extra fitted parameters. The non-convexity of the charge density
problem is also discussed.

sufficient care, one can fit with some appropriate model and
from this extract local (i.e. atom-by-atom within the unit cell)
charge density variations. This has been done in the past with
bulk crystals using convergent-electron-beam diffraction (e.g.
Zuo et al., 1988; Gjonnes & Boe, 1994; Saunders et al., 1995,
1996; Midgley & Saunders, 1996; Holmestad & Birkeland,
1998; Nuchter et al., 1998; Saunders et al., 1999; Zuo et al., 1999;
Holmestad et al., 1999; Tsuda et al., 2002; Jiang et al., 2002,
2003), and via powder electron diffraction (Avilov et al., 2001;
Avilov & Tsirelson, 2001; Tsirelson et al., 2001; Avilov, 2003).

We have very recently managed to perform the same type of
analysis at a surface, initially for the MgO (111) /3x./3 R30
surface (Subramanian et al., 2004) and more recently for the Si
(001) 2x1H surface (Ciston et al., 2006). To achieve this, we
needed to use a procedure slightly different from the normal
one, giving the following four-step process.

(a) An initial analysis using direct methods and conven-
tional neutral atom structure factors to find the initial model.
The direct methods approach for surfaces has been described
elsewhere (Marks ef al., 1998; Marks, 1999; Marks et al., 2001;
Subramanian & Marks, 2004) and will not be discussed further
here.

(b) A parameterization of the bulk charge density for the
material in a form that can be transferred to a refinement of
the surface. For MgO, this was a relatively simple spherical
model (Subramanian et al., 2004); for silicon, a more compli-
cated approach was needed using bulk bond-centered
pseudoatoms (BCPAs), which is the main focus of this paper.

(¢) Refinement of the structure using these pre-param-
eterized BCPAs.

(d) A final refinement where part of the charge density is
allowed to vary and we look for differences relative to the bulk
BCPAs. This can be done by a multipole expansion, or some
other approach.
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While other methods might work, the above is the only one
we have found to be stable in practice. To understand why, it is
important to recognize that most surfaces have relatively large
spacings so (particularly with transmission electron diffrac-
tion) the effects of charge density variations can be very large,
up to 50% of the intensity of relatively strong diffracted
beams. As a consequence, a neutral atom refinement can be
rather unstable. Using BCPAs fitted to the bulk accounts for
about 50-75% of the difference in the charge densities at the
surface, so is much more stable. Note that we are not
concerned here with whether the final residuals from a fit are
better, but rather the more fundamental problem of obtaining
a stable reasonably well conditioned fit; our experience with
experimental data to date is that the neutral atom starting
point is often quite poorly conditioned and may not converge
to a reasonable result.

To fit the bulk charge density in a way that can be trans-
ferred to a surface is not as simple as one might think. Because
of the translational repeat of a bulk material, many different
basis sets will give an identical bulk charge density. Depending
upon how the charge density is partitioned among the atoms,
the basis sets will give completely different results at a surface,
in some cases much worse than using neutral atoms. This is
particularly true for electron scattering factors which are very
sensitive to the long-range behavior of the charge density
associated with a particular atom.

The intention of this note is to detail a method of over-
coming these issues to obtain a viable parameterization by
fitting not simply the bulk material but also a large set of more
complicated structures using theoretical charge densities
calculated by density functional theory (DFT) methods to
ensure a reasonable parameterization that can be extrapolated
to fit other structures or a surface. However, before describing
the main features of the analysis, it is useful to briefly detail
the non-convexity of a charge density fitting since this is
crucial to understanding why more than one fit can be used for
just the bulk case.

2. Non-convexity of charge density fitting

The key points of a convexity analysis are well described in the
optimization literature [for a thorough discussion, see for
instance, Rockafellar (1970), Nocedal & Wright (2000) and
Bertsekas (2003)], and have been briefly discussed previously
in the context of direct methods (Marks et al., 1999). We will
briefly perform the same analysis in the context of charge
density.

Suppose that we have a charge density o(r) which is
parameterized in some form

p(r) = Y pu(r—r) (1)

using some ‘atom-like’ charge density around each site r;. We
can define as a set all the possible parameterizations that
satisfy the condition

p(r) — Z p.(r—r;)| < Tol, 2)

where “Tol” is some measure of how well we seek to fit the
charge density. Let x [= ) ;0,(r — ;)] represent one param-
eterization that is a member of the set and y a second. If all the
points on the line joining x and y are also members of the set, it
is called convex; if some are not, it is non-convex. The key
mathematical result is that, if the set for some observable or
parameterization is non-convex, in general multiple local
solutions exist. (Unfortunately, in some cases only one solu-
tion does exist and it is not possible in most cases in any formal
mathematical way to determine whether only one or a number
of local solutions exist.)

As an example, in terms of a simple multipole-like expan-
sion for a given atom,

pa(r) = pcore(r) + PvK3pvalence(Kr) + [Z Rl(r)Ylm(e’ ¢) (3)

If we take two different « values, x; and k,, with
k3= Ak + (1 — Ak, 0 < A <1, as representative members of
the set of « values for this atom, since in general

)"K?pvalence(lclr) + (1 - )‘)Kgpvalence(KZr) # Kglovalence(K3r)7 (4)

the densities as a function of position and k form a non-convex
set. (Formally, one should always refer to convexity and non-
convexity for the full function of both the positional variables
and parameters such as the « values. We will use here the
mathematically ‘looser’ approach of calling a parameter that
leads to a non-convex set a ‘non-convex parameter’, similarly
for a ‘convex parameter’.) Any constant multiplier of the
spherical harmonics Y, (0, ¢) is a convex parameter, but the
radial components [R(r)] may not be. For instance, if we write

R(r) =)_A, exp(—B,r), 5)

the parameters A, are convex, but B, are not. (The same
analysis holds for an expansion in terms of Slater orbitals.)
Furthermore, when one includes expansions about multiple
atoms, the angular components of the spherical harmonics also
become non-convex. Lastly, the measurements against which
the model is being tested, structure factors, are themselves
non-convex; the full structure factors (with phases) form a
non-convex set. Note that the question of whether the par-
ameters in an expansion or the data are convex or not is
completely different from the question of whether the par-
ameters are correlated. Correlated parameters make the
problem being solved a little more complicated, but it is still
well posed and can be handled by a conventional minimization
approach such as least squares, particularly if it includes the
second-order part of the Hessian (e.g. see Nocedal & Wright,
2000); a non-convex problem is quite different and may
require a multisolution approach such as simulated annealing
or a genetic algorithm and often has multiple solutions.

This semi-formal analysis demonstrates that there may well
be many equally good (or equally bad) expansions that can be
used for a bulk material, all of which will give the same overall
charge density. This does not mean that they will also give a
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Table 1

Dimensions and fractional coordinates of Si in a typical supercell.

Cell parameters

X 0.2500 0.7500 0.2500
y 0.0000 0.0000 0.5000
z 0.0620 0.9380 0.1975

good fit at a surface, or for a more complicated structure.
Although there is no formal mathematical proof that we are
aware of, it is reasonable that if one can increase the number
of parameters against which a fit is performed the overall
problem will become ‘less non-convex’, and the solution more
unique. This suggests a parameterization against a database,
herein a large set of DFT calculations.

3. Numerical methods

In this paper, we will only describe fits to theoretically
calculated valence charge densities. These were generated
using the Wien2k program (Blaha et al., 2001) [a full-potential
all-electron code based on the use of linearized augmented
plane-wave + local-orbital (APW+lo) basis sets]. All the
calculations for silicon were performed non-spin-polarized
with a muffin-tin radius (RMT) of 2.1 Bohr, a maximum
angular momentum for the radial wavefunctions (/,.x) of 10,
and a resolution parameter (the smallest RMT*reciprocal-
space limit, or RKMAX) of 7 using the generalized gradient
approximation (GGA) of Perdew et al. (1996).

DFT uses pseudo-orbitals, which do not have to correspond
to the true electron wavefunctions but are often taken to be
the same. In all cases, the changes in the core densities were
very minor (relative to neutral atoms), so the ‘valence density’
from the DFT results was used as effectively identical to the
true valence density. To improve the convergence, only the
valence density by itself was calculated and matched.

Refinements were performed using the standard dns/ code
from the Port Library (Dennis et al., 1981; Gay, 1983; Nocedal
& Wright, 2000), which was locally modified to include an
additional Broyden-Fletcher—Goldfarb-Shanno (Shanno &
Phua, 1974) numerical estimation of the second-order part of
the Hessian matrix" in the least-squares fit since this was found
in practice to be more efficient than the original version.

4. Results

Our approach for silicon was to use a pseudoatom method
(Brill, 1959; Phillips, 1968; Brill et al, 1971; Dietrich &
Scheringer, 1978; Scheringer & Kutoglu, 1983) since tests
indicated that this gave a substantially better fit than a

'Ina least-squares fit, the Hessian is defined as B = JTT + Zj r]Ver, where J
is the Jacobian of the residual (r). Often, only the first term is considered
owing to the linearity of the optimization near the solution. However, for
systems with large residuals, the second-order part of the Hessian can become
significant and it is better to approximate it in some manner to achieve
superlinear convergence. For a more complete discussion, see Nocedal &
Wright (2000).

a=37,b=38,c=125A, a =90, B=90, y = 90°

0.7500 0.2500 0.7500 0.2500 0.7500
0.5000 0.0000 0.0000 0.5000 0.5000
0.8025 0.5525 0.4475 0.6875 0.3125

multipolar expansion of the charge density (for silicon, not for
all materials) for the same number of adjustable parameters.
In the model we used, the total density for each Si atom (at the
origin for simplicity) can be written as

,Oa(l‘) = pcore(r) + pvalence(r)
+ CA/ W) exp(—Ir — 1, [2/W,)
— (/W Pexp(-m’ e —x_P/W)} (6)

where both the radially symmetric part of the valence density
Duatence (7) @s well as the occupancies and the location and shape
of the BCPA feature were fitted against the DFT data [see Fig.
1 for a pictorial representation of the third term in equation
(6)]. Numerous variants were attempted similar to those
described below (e.g. one central feature or two, inclusion/
exclusion of the negative anti-bonding Gaussian etc.), and the
final form used a higher-order model (33 parameters plus 1 for
the weighting scheme) fitted to 106 theoretical data sets
comprising a total of 93142 theoretical structure factors,
including both amplitudes and phases. The sets used were
calculated from the following variations on a bulk Si lattice:

(i) bulk silicon with a range of lattice parameters from 4.892
to 7.609 A (32 structures);

(ii) varying the c/a ratio from 1 to 1.3 (0.05 step) while
maintaining a constant volume of the unit cell;

(iii) varying the unit-cell volume by scaling the unit-cell axes
by 0.925 to 1.15 (0.025 step) for each c/a ratio;

(iv) four supercells (see Table 1 for a typical structure).

The supercells constructed have the structure of distorted
bulk Si and are used to capture the averaged longer-range
charge density of the valence electrons which cannot be
captured with a traditional eight-atom Si unit cell. In addition
to these artificial cells, we added to the total data set the
experimental values for bulk silicon taken from Saka & Kato
(1986) and Cumming & Hart (1988), including a bulk
temperature factor as an additional variable for this data set
only.

1 Reat+dR |

Figure 1
Schematic of bonding model: Si, positive and negatively charged BCPAs
as indicated.
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Table 2

Slater orbital expansion coefficients for valence levels of Si [notation is that of Su & Coppens (1998)].
3sp

n 2 2 2 2

c —0.03405 —0.17788 —0.16001 —0.19069

3 22.0751 4.0132 4.3334 3.2822

3 3 3 3 3
0.04448 0.26586 1.00000 0.06508 0.23859
15.4242 2.0078 1.3704 1.0085 3.9362

In a tight-binding model, one would expect the magnitude
of excess (and depletion) charges to depend exponentially
upon the bond distance; this matched the calculated densities
rather well. In particular, the charge magnitude of the excess
region was parameterized as

C, = occ x exp(—d,6R + d,6R* — d,6R?), @)

where 6R is the fractional change in the Si—Si bond length
from the bulk length [6R = dR/(Ry + dR)], occ is the fitted
occupancy of the central feature, and d;_; are fitted decay
parameters. Because the number of data points used was
orders of magnitude greater than the number of fitted par-
ameters, we utilize a non-linear (three-term) exponential for
the sake of accuracy without suffering any deleterious effects
to goodness-of-fit metrics due to over-fitting. The magnitude
of the depletion Gaussian was taken as —C, to maintain
charge neutrality as indicated previously.

The distances of the BCPA features along the axis of each
Si—Si pair were fitted independently for both features and
parameterized as

r,_ = (;I;Cii’_l)exp(dslp#JR), (8)
where dac, _ are fitted distance parameters and dslp, _ are
fitted exponential decay parameters for the positive and
negative Gaussians, respectively.

The widths of the Gaussian features were similarly param-
eterized to the fractional bond-length deviation:

W, =0, +a, 8R+b, SR, €

where o is the first-order width of the Gaussian BCPAs and
a,_ and b, _ are fitted parameters for bond-length modifica-
tion to the width for both the positive and negative BCPAs.
It was determined in a later application of this model to
experimental data of the Si(001)-2x1H surface (Ciston et al.,
2006) that utilizing only the zero-order term of this expression
is sufficient. The bulk Debye—Waller value for silicon (Bg;) was
also refined in the model using the experimental structure
factors for silicon. In this case, we assumed that the BCPA
features had the same Gaussian damping as the atoms.
Initial tests were performed using the ground-state silicon
Slater-orbital expansion given by Su & Coppens (1998) for the
monopole terms (spherically symmetric), with a conventional
k expansion/contraction. Although one can use this with
multipole terms to fit simple bulk silicon, we were unable to
obtain reasonable fits for the more demanding problem of
fitting our large data set. The fact that an isolated atom density
from a multiconfigurational SCF calculation (Su & Coppens,

1998) is not a particularly good fit for an atom in a bulk
material, particularly for the long-range components, is not
surprising, and we believe that this is why the fitting would not
work. We found it much superior to use a Slater-orbital
wavefunction expansion for the spherically symmetric
component, where both the radial exponents and the occu-
pations were allowed to vary as part of the fitting so the long-
range components can be adequately matched. Tests indicated
that there was no need to incorporate k-like expansion or
contraction of the spherical component as a function of the
local environment; it was constant for all the 106 different
structures in the data set. Instead, the major non-spherical
component of the bond deformation density was fitted by
locating excess (positive) charge features modeled by Gaus-
sians along the bond, and a depleted region of negative charge
modeled by a negative Gaussian feature opposite the bonds as
shown in Fig. 1. The excess and depletion features were
constrained to have occupancies of identical magnitude but
opposite sign to maintain charge neutrality in the vicinity of
each Si atom. Note that the variables we have used are non-
convex, so there is the possibility of multiple solutions.
However, with the rather large number of data points, we
found the solutions to be unique. Note also that, since the
charge density from the DFT calculations is everywhere
positive, there will be no unphysical negative regions in our
parameterization.

Fitted values for the valence level as a ‘3sp shell’ with an
occupancy of 4 electrons including both the 3s and 3p in terms
of the Slater-orbital expansion coefficients are given in Table
2; the core electrons were taken from the published multi-
configurational SCF data (Su & Coppens, 1998) which fit the
DFT results for the core pseudo-orbitals very well. (It is not
appropriate to separate 3s and 3p levels in a DFT calculation
since they are strongly hybridized and any such separation is
prone to error as well as not being physically significant.) It is
important to note that, for proper normalization, the wave-
functions computed from the Slater terms in Table 2 must be
multiplied by (2/7)"%. In all the structures explored, the bond
angles were relatively close to the perfect tetrahedral angle.
Therefore, the position and occupancy of the Gaussian
features along the bond axis were taken to be independent of
the bond angle and only a function of the bond length. (If one
wanted to parameterize sp® versus sp> bonding terms, a
dependence upon bond angles would almost certainly need to
be included.)

The Slater orbital expansion terms in Table 2 are somewhat
different from a k expansion (Coppens et al, 1979) of the
conventional atomic orbitals (see Fig. 2a). From the left side of
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Fig. 2(a), it is apparent that the Slater orbitals fitted in this
work are somewhat expanded compared to those of conven-
tional atomic orbitals. However, a simple « expansion
(x = 0.96, chosen for smallest difference) of the atomic orbital
does not quite describe what is seen in the full model (Slaters
+ BCPAs), which has a broader peak and a more quickly
decaying tail. Fig. 2(b) plots the difference in charge density
between the full model and a conventional atomic orbital in
the plane of the Si—Si bond.

This model differs from that of a centrally located charge-
cloud feature [see Scheringer (1980), Kutoglu et al. (1982) and
Wu & Spence (2003), for example] in several other ways. The
Si-atom cores themselves remain neutral as the positive

Figure 2

(a) Fitted Slater orbitals of the full model compared toh both
conventional and k-expanded atomic Slater expansion. (b) Charge
density difference between the full model and atomic model in the plane
of an Si—Si bond (dashed lines negative, contour interval 0.01 e A™)

features between each atomic pair are balanced by negative
anti-bond features of the same magnitude. Additionally, the
positive Gaussian charges are not centrally located, but form a
slightly closer association with each individual atom. The
largest and most important difference is in the manner in
which this model is eventually applied to experimental data.
The purpose of fitting the size, charge and position of the
Gaussian features using tens of thousands of theoretical
structure factors is to determine numerical constants in closed
forms as functions of the Si—Si bond length which describes
these properties. Upon fitting an actual experimental data set,
these functions are used as an initial second-order model to
describe to quite a high degree of accuracy the bonding
features (of Si—Si pairs only) at a surface with no adjustable
parameters, because the excess charge in the model is a
function only of the bond length. In addition, the Slater-orbital
expansion terms are taken to be those refined from this
theoretical analysis and remain fixed when fitting experi-
mental data. The atomic positions and temperature factors are
fitted in the typical manner as if the atoms were neutral, and
the bonding information is incorporated into each iteration of
the fit by utilizing this parameterization. In the experimental
fit, the BCPAs are taken to have the same temperature factors
as the Si they are bound to. A more complete third-order
model with, for instance, additional multipolar terms would
then incorporate perturbations about this second-order model
to describe the charge density changes at a surface. Since the
second-order model will be much closer to the true density
than a zero-order neutral atom model, the perturbations
needed for a complete description will be smaller so the whole
problem becomes much better conditioned.

A subtle question concerns how one should treat the
intensities as a function of scattering angle. To obtain a
representative fit of the long-range components (small scat-
tering vector), which are the ones most significant for a charge
density analysis (particularly for electron diffraction or for a
surface), it is reasonable to weight these more heavily, for
instance by using a Debye—Waller-like scheme with

weight = exp(—As>), (10)

where s is the length of the scattering vector and A is
adjustable. A weighting approach similar to this is also
appropriate because of the numerical errors in any DFT
calculation. All DFT calculations (and also other ab initio
methods) use a limited range of sampling in reciprocal space
(in a rather complicated fashion that we will not expand upon
here); there are also numerical errors due to how the charge
density is represented near the atomic nuclei, truncation
effects or kinks at the edge of the muffin tins, and the fact that
the density functionals used are themselves only approxi-
mately correct. As a consequence, the larger s values are less
reliable. A reasonable value for the weighting term A in
equation (10) is going to be something similar to what one will
have in any experimental data from thermal vibrations; we do
not believe that there is any ‘correct’ value. In practice, we
have not found that this term has a major effect, and used a
value of A =1.

Acta Cryst. (2006). A62, 309-315
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Table 3

Numerical coefficients of the second-order model.

occ 0.15489
d; 0.48608
d, —0.58791
ds 6.8459
dac_ 1.4995
dac, —1.6672
dslp_ —0.05696
dslp,. 0.04837
o_ 9.6274
o, 13.5763
a_ 1.2121
a, —3.5310
b_ —4.6612
b, 0 (not refined)
Bg; 0.4657

All of the numerical coefficients included in this section
correspond to a bonding model in which there are two features
of charge excess between each Si pair. The values of these
coefficients are given in Table 3 and represent the model we
found to yield the best results when fitting actual surface
diffraction data. Analysis of similar models (e.g. single-bond
feature, features of far different sizes efc.) was performed
which yield entirely different values for these coefficients, but
the resulting models fit nearly as well to the data emphasizing
the overall non-convexity of the problem.

The numerical uncertainties in these parameters do not
arise from the residuals of the fitting itself but are instead
dominated by the inherent errors of the DFT calculations
which were used to generate the 93142 data points for
refinement. DFT uses pseudo-orbitals which do not have to
correspond to the true electron wavefunctions but are often
taken to be the same. An example of one manifestation of
these errors is that the APW+lo method used herein produces
a discontinuity in the first derivative of the charge density at
the edge of the muffin tin. For a more complete character-
ization of the errors in the DFT charge density of silicon, see
Zuo et al. (1997) who estimates a x* of over 4 for GGA
methods. In light of these considerations, the error of the
values in Table 3 should be taken to be on the order of 1%. As
an alternative gauge of the accuracy of the model, Table 4
shows the calculated values for the bulk silicon structure
factors obtained from our model compared to both the
experimental data and our calculated GGA results.

From the GOF values in Table 4, it is clear that our second-
order model is a significantly better fit to the experimental
data than the GGA structure factors even thought we fitted
the model to the valence charge density calculated by GGA.
The difference, therefore, must be due to discrepancies in the
core-electron wavefunctions since the second-order model
utilized a Slater orbital expansion for the core levels rather
than fitting to the GGA results. It is known that GGA does not
perform as well with core electrons compared to valence
electrons due to self-interactions. We did not use any core self-
interaction corrections (such as given by Friis et al., 2003) to
the GGA calculations because although these corrections
improve the core-electron density they yield poor energies for
the core states.

Table 4
Comparison of experimental and theoretical Si form factors in units of
electrons per atom.

Experimental errors are given in parentheses. A goodness-of-fit factor (GOF)
was also computed for both sets of calculated form factors. The GGA result
was fitted with a Debye-Waller (B) factor of 0.4662 A

Second-order

hkl Experimentt APW-+lo, GGA# model
111° 10.6025 (29) 10.6025 10.6009
220° 8.3881 (22) 8.3897 8.3910
311° 7.6814 (19) 7.6882 7.6820
222° 0.182 (1) 0.1654 0.1816
400° 6.9958 (12) 6.9999 6.9955
331° 6.7264 (20) 6.7135 6.7264
422° 6.1123 (22) 6.1020 6.1096
333° 5.7806 (21) 5.7680 5.7729
511° 5.7906 (27) 5.7884 5.7921
440° 5.3324 (20) 5.3263 5.3385
531 5.0655 (17) 5.0611 5.0739
620 4.6707 (9) 4.6668 4.6738
5337 4.4552 (11) 4.4538 4.4545
444° 4.1239 (18) 4.1168 4.1186
711¢ 3.9282 (22) 3.9312 3.9354
551° 3.9349 (34) 3.9328 3.9352
642° 3.6558 (54) 3.6495 3.6507
731 3.4919 (11) 3.4928 3.4934
5537 3.5055 (14) 3.4944 3.4936
800" 3.2485 (34) 3.2526 3.2528
733 3.127 (14) 3.1208 3.1194
822 29111 (15) 2.9148 2.9133
660° 2.9143 (16) 2.9150 2.9133
555° 2.8009 (21) 2.7988 2.7991
751 2.8006 (25) 2.8017 2.7991
840" 2.6200 (7) 2.6254 2.6227
911 2.5325 (8) 2.5275 2.5245
753 2.5274 (29) 2.5261 2.5246
664" 2.3677 (9) 2.3762 2.3726
844° 2.1506 (24) 2.1605 2.1562
GOF§ N/A 25.1 11.4

t Data taken from (a) Saka & Kato (1986) and (b) Cumming & Hart
(1988).  APW+lo: calculations using the GGA of Perdew et al
(1996).  § GOF = 1/N Y_,(1/a2)(f"™™ — 7).

5. Discussion

The strategy that we have used herein, fitting a larger data set
from DFT results, is one that we believe is generally applicable
and will give much more stable results than just starting from
neutral (unbonded) atoms. It is an extension of previous work
on an MgO surface (Subramanian et al, 2004) where a
spherical (first-order) deformation model was adequate for
the initial refinements yielding a x* of 1.5, whereas the neutral
atom (zero-order) fit refined to a x> of approximately 3,
emphasizing the necessity of accounting for the effects of
bonding. Using the second-order silicon parameterization
described herein, we have been able successfully to refine the
charge density of an H-atom-terminated Si (001) 2x1 surface
(Ciston et al., 2006) including stably refining the H-atom
positions; the H atoms were unstable in a neutral atom
refinement and would refine to a (B) temperature factor of
>100 or to chemically unrealistic locations (Si—H bond
distances of 5 A or more). This is why a previous analysis
(Lauridsen et al., 2000) using a neutral atom approach for the
same data was unable to find the H-atom positions. With the
second-order model alone (i.e. no additional charge defor-
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mation), the H-atom positions refined stably giving an Si—H
bond distance of 1.51 A and an integrated bond density
between two of the surface Si atoms of 0.31 electrons, which
compared well with the results of DFT calculations (at 0 K) of
1.49 A (Ciston et al., 2006) and 0.37 electrons.

The BCPA approach is of course not the only one, and in
some cases a multipolar expansion of a large data set might
give better results, where ‘better’ should be taken in a semi-
formal mathematical sense to indicate an equal level of
accuracy with a smaller number of adjustable parameters. One
thing that we feel should be stressed is the importance in all
cases of using a reasonable basis set to fit the radially
symmetric part of the density, not just a simple « fit with one
adjustable parameter, particularly for applications using
electron diffraction data. Conventional neutral atom expan-
sions are based upon Hartree-Fock or multiconfigurational
Hartree—Fock analyses with Slater or Gaussian orbitals. While
these will almost certainly be quite good near the core, they
are very likely to be somewhat inaccurate for the long-range
components. Since these have a large effect on the scattering
factors at small s values, where electron diffraction is most
sensitive, just allowing for a simple expansion/contraction is
not in general adequate.

This work was supported by the MRSEC program of the
National Science Foundation (DMR-0076097) at the Materials
Research Center of Northwestern University (BD) and the
National Science Foundation (DMR-0455371).
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